|
In physics, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution of electric charge to the resulting electric field. The law was formulated by Carl Friedrich Gauss in 1835, but was not published until 1867. It is one of Maxwell's four equations, which form the basis of classical electrodynamics, the other three being Gauss's law for magnetism, Faraday's law of induction, and Ampère's law with Maxwell's correction. Gauss's law can be used to derive Coulomb's law, and vice versa. ==Qualitative description== In words, Gauss's law states that: :''The net electric flux through any closed surface is equal to times the net electric charge enclosed within that closed surface''. Gauss's law has a close mathematical similarity with a number of laws in other areas of physics, such as Gauss's law for magnetism and Gauss's law for gravity. In fact, any "inverse-square law" can be formulated in a way similar to Gauss's law: For example, Gauss's law itself is essentially equivalent to the inverse-square Coulomb's law, and Gauss's law for gravity is essentially equivalent to the inverse-square Newton's law of gravity. Gauss's law is something of an electrical analogue of Ampère's law, which deals with magnetism. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss's theorem. Each of these forms in turn can also be expressed two ways: In terms of a relation between the electric field E and the total electric charge, or in terms of the electric displacement field D and the ''free'' electric charge. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gauss's law」の詳細全文を読む スポンサード リンク
|